
MATHEMATICS OF COMPUTATION 
Volume 69, Number 232, Pages 1667-1683 
S 0025-5718(00)01182-0 
Article electronically published on March 15, 2000 

COMPUTING THE TAME KERNEL 
OF QUADRATIC IMAGINARY FIELDS 

JERZY BROWKIN, 
WITH AN APPENDIX BY KARIM BELABAS, AND HERBERT,GANGL 

ABSTRACT. J. Tate has determined the group K2OF (called the tame kernel) 
for six quadratic imaginary number fields F = Q(fi(), where d =-3,-4,-7, 
-8, -11, -15. Modifying the method of Tate, H. Qin has done the same for 
d = -24 and d = -35, and M. Skalba for d =-19 and d = -20. 

In the present paper we discuss the methods of Qin and Skalba, and we 
apply our results to the field Q(\-23). 

In the Appendix at the end of the paper K. Belabas and H. Gangl present 
the results of their computation of K2OF for some other values of d. The 
results agree with the conjectural structure of K20F given in the paper by 
Browkin and Gangl. 

1. INTRODUCTION 

J. Tate [T] has determined the tame kernel of all quadratic imaginary Euclidean 
fields F and of F = Q ( -15). He proved that all mappings Do (see notation below) 
are isomorphisms if the norm of the prime ideal v of the field F is sufficiently large. 
Then he investigated the remaining v's (with small norms) performing necessary 
computations with symbols. 

Unfortunately, for quadratic imaginary fields F with large discriminants, the 
number of exceptional v's which should be investigated individually, increases very 
fast. 

Skalba [S] used a generalization of the classical theorem of Thue to get a rea- 
sonable bound for norms of exceptional v's, and he applied his result to the fields 
Q( (AX-9) and 2-0). 

In the present paper we improve the estimates of Skalba essentially, and we get 
much smaller bounds for norms of exceptional v's. We apply these estimations in 
the case F - Q (V-23). Our estimations give reasonable bounds also for several 
other quadratic imaginary fields (see the Appendix by K. Belabas and H. Gangl at 
the end of this paper). 

Let us remark that for real quadratic fields F much more is known; e.g., we can 
describe the tame kernel of every real quadratic field of discriminant less than, say, 
5000. It is due to the fact that the order of the tame kernel for any real quadratic 
field can be expressed by means of corresponding Bernoulli numbers, or equivalently 
by Kronecker symbols, and consequently it can be easily computed. 
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2. NOTATION 

We shall use the notation of Tate [T] with minor changes, which will be described 
below. 

For any number field F let 

(1) V1, V2, v3,... 

be all finite places of F ordered in such a way that NVm-i < NVm, for m = 2, 3,. 
For m > 0 let Sm = {vl,... ,vm}, thus So = 0. Denote by O9Sm the ring of 

Sm-integers of F, by Usm the group of Sm-units, and by kvm the residue field of 
the valuation vm. Thus Os, is the ring OF of integers of F, and Us, is the group 
UF of units of F. 

Let K2sm (F) be the subgroup of K2F generated by symbols fa, b}, where a, b E 

Usm. Then K2F = U'=i KWm(F). 
Let Avm K2F - k* be the tame symbol corresponding to vm. Then 

aVm(K2m1`(F)) = 0, and we have the induced homomorphism (also denoted by 
DVm) 

dUm~~~~~ )' m-i() k 

aVm K`2m(F)/K2m(F) >v. 

If the prime ideal of (9Sm corresponding to vm is principal generated by lrm, we get 
the following commutative diagram 

USm-1 

K`m (F)/Kgm-1 (F) rm vm 

where a (u) = {u,lrm} (mod K2sm1(F)) and ,3(u) = u (mod lrm), for u E Usm,, 
Let a D= 

0 1 Dvj K2F-+?- kv;, then K2OF =ker D. 
Therefore if we prove, for some m and all j > m, that ovj is an isomorphism, 

then kerD c K2rmn (F). Since the group Usmi has a finite number of generators, 

they determine a finite set of generators of the group K2s m(F), which can be 
given explicitly. Then after some additional computations it is usually possible to 
determine the group K20OF itself. 

Since we shall assume below that m is fixed, we simplify the notation as follows: 

S:= Sm, S' := Sm-1, V:= vm, k = kv := kvm, Dv :=vm, ir:= lrm, U:= Usm_. 

Moreover, we denote by U1 the group generated by (1 + 7rU) n U. 

3. WHEN IS Dv AN ISOMORPHISM? 

We shall use the following general theorem of Tate. 

Theorem 1 ([T], Proposition 1). Suppose that W, C and G are subsets of U satis- 
fying 

(1) W C CU1 and W generates U. 
(2) CG c CUi and 13(G) generates k*. 
(3) I Ei Cb nkertiv cU.E 

Then o9v is bijective. C 
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3.1. Preliminary information on the class group. Denote by qF the least 
number such that in every class of ideals of OF there is an ideal of norm < qF. It 
is well known (see e.g., [C], p.141) that qFp< d/3 for the quadratic imaginary 
field F of discriminant d. 

Let Q be a set of representatives q of all ideal classes satisfying Nq < qF. 
Moreover assume that (1) E Q represents the principal class. 

Thus for every ideal a of OF there is a unique ideal q E Q such that the ideal 
a q is principal. 

In the next lemma we determine the values of qF for some quadratic imaginary 
fields F. 

Lemma 1. Let F = Q(fd) be the quadratic imaginary field with the discriminant 
d and the class number hF. 

(i) We have qF = I iff hF 1, 

i.e., iff d = -3, -4, -7, -8,-11, -19, -43, -67 or -163. 
(ii) We have qF= 2 iff hF= 2 or 3 and (d)#- -1, 

i.e., iff d =-15, -20, -24, -40, -52, -88, -148 or -232, for hF 2, 
and d=-23 or-31, forhF= 3. 

(iii) If hF= 2or3 and (d)=-1 and (d)_-1, then qF= 3, 
i.e., if d = -35,-51,-123 or -267, for hF = 2, 
and d = -59, -83 or -107, for hF = 3. 

(iv) For other discriminants d, -151 < d < 0, we have the following values of qF. 

d -39 -47 -55 -56 -68 -71 -79 -84 -87 
The class group Z/4 Z/5 Z/4 Z/4 Z/4 Z/7 Z/5 (Z/2)2 Z/6 

qF 3 3 4 3 3 4 4 5 4 
d -91 -95 -103 -104 -111 -115 -116 -119 

The class group Z/2 Z/8 Z/5 Z/6 Z/8 Z/2 Z/6 Z/10 
qF 5 5 4 5 5 5 5 5 
d -120 -127 -131 -132 -136 -139 -143 -151 

The class group (Z/2)2 Z/5 Z/5 (Z/2)2 Z/4 Z/3 Z/10 Z/7 
qF 5 4 5 6 5 5 6 5 

Proof. We apply the fact that all quadratic imaginary fields with small class num- 
bers are known (see [Al], [A2], [W] and references given there). 

(i) Obvious. 
(ii) If qF = 2, then by (i) we have hF > 1, and to every nontrivial class of ideals 

belongs an ideal of norm 2. Consequently 2 is not inert, i.e., (d) : -1, (2) = P2P'2. 
Therefore there are at most two nontrivial classes, i.e., hF < 3. 

Conversely, if hF = 2 or 3 and (d) : -1, then idl > 15 and there is a prime 
ideal P2 of norm 2. Since there is no element of norm 2, P2 is not principal. 

If hF = 2, then Q = {(1),P2}, if hF = 3, then (2) P21'2 and P2, p' belong to 
distinct ideal classes since the class number is odd. Hence Q = {(1), P2, P}. Thus 
in both cases qF = 2. 

(iii) Now the prime 2 is inert, but there is a prime ideal P3 of norm 3. Since 
dl > 15, the ideal P3 is not principal, and we proceed similarly as in (ii). 

(iv) It is an easy exercise on the ideals in quadratic number fields (see e.g., [C], 
Table III-some of the ideals given there can be replaced by ideals with smaller 
norms). El 
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One can characterize similarly quadratic imaginary fields F such that qF = 

3, qF = 4, etc. 
For example, qF = 3 iff one of the following conditions holds: 

() (2d) -=-11 (d) -& 1 and hF = 2 or 3; 
(ii) (d) - -1, (d) 4 1, (d) = 0 and hF = 4 with cyclic class group; 

(iii) (d) 
- 

1, (d) = I an-d hF = 5. 
We leave the proof to the reader as an amusing exercise. 

3.2. The set W of generators of U. We say that a prime ideal p of OF is earlier 
than v if the valuation corresponding to p appears before v in the sequence (1). 

We assume that d < -4 and that every ideal belonging to Q is a product of 
prime ideals earlier than v. This condition is obviously satisfied if Nv > qF. 

Let W be the set consisting of -1 and of generators a =A 1 of principal ideals of 
OF of the following forms: 

(i) (a) = q, 
(ii) (a)= q lq 2q3, 

where p is a prime ideal earlier than v, and , q 1, q 2, q 3 E Q. 
It follows that the set W is finite and W c U n OF. 

Let us remark that if hF = 1, then Q = {(1)}, thus we can omit the ideals (ii). 
Similarly, if hF = 2, then we can assume in (ii) that q 3 = (1). 

Denote by (W) the group generated by W. 

Lemma 2. (W) = U. 

Proof. 1) First we prove by induction on r that if a principal ideal 

(a)=qil.qr, 

where all q j E Q, then a belongs to (W). 
If r < 3, then the claim follows from the definitions of W and Q. 
If r > 3, then let q E Q represent the class containing the ideal q 1q 2, and let 

q' E Q represent the opposite class. 
We have 

q1q2q'1=(b), qq' =(c), 
where b, c E (W) by the definition of W. 

Consequently blac and 

(a)(c) = (b) q 3 ... r. 

From the inductive assumption it follows that 

q q3 q -r = (d)) 

where d E (W). Hence a = ?bd/c E (W). 
2) Let u E U, and consider the prime ideal decomposition 

(2) (u) = (pli .Pr)(Pr+ i ... 
Pr+s) 

For j = 1, ... ,r + s, we have pj is earlier than v and 

pjqj = (aj), for some q j E Q. 
Hence aj E W. Moreover, for an appropriate q E Q, we have 

qq1... qr=(b), where b(EOF. 
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Hence b belongs to (W) by the first part of the proof. 
Multiplying both sides of (2) by the ideal 

(b)(ar+i) ... (ar+s) = q q 1 q.. rplpr* +s q r+1 ... q r+s 

we get 

(u) (b) (ar+i ) ... (ar+s) = q q r+l ... q r+s (a,) ... (ar). 

Consequently the ideal q q r+l ... q r+s is principal, and its generator, say t, belongs 
to (W) by the first part of the proof. 

Therefore the element 

u = ?tal ... ar/bar+i ... ar+s 

belongs to the group generated by W. CG 

Let us remark that if the set W satisfies condition (1) of Theorem 1, and some 
proper subset generates U, then obviously this subset also satisfies the condition 
(1). Thus in general we can replace the set W defined above by a smaller one. 

Lemma 3. For every w E W, we have Nw < qFNv, provided 
(i) hF < 2, and qF < Nv, or 

(ii) hF > 2 and q2 < Nv. 

Proof. FRom the definition of W it follows that for every w E W, 

Nw < max(NpNq , Nq 1Nq 2Nq 3) < max(qFNv, q 3) < qFNv, 

under the assumption (ii). 
If hF ? 2, we can assume that q3 = (1) in view of the remark before Lemma 2. 

Hence 

Nw < max(NpNq , Nq 1Nq 2) < max(qFNv, q2 ) < qFNv 

under the assumption (i). CG 

We shall frequently use the following lemma. 

Lemma 4 ([T], Lemma 1). If a, b E U n(9F, 13(a) =13(b) and lal + lbl < Nv, then 
a E bU1. D 

3.3. The set C of representatives modulo v. First we make the following 
remark (see [T], proof of Propositon 1). 

Remark 1. Condition (2) of Theorem 1 implies that p3(C) = k*. 

Proof. FRom (2) it follows that i3(C)>(G) C /3(C), and hence by induction on t we 
get f3(C)f(G)t c p3(C), for t = 1, 2,.... 

For every a E k* and c E C we have a = /3(c)a', for some a' E k*. Moreover a' is 
a product of generators of k*: 

a' = f(gi) ...(gr), for some gi,... ,gr E G. 

Hence a = 0(c)0(g1) * f3(gr) E i3(C), i.e., p3(C) = k* D 

We need the following version of the theorem of Thue generalized by Skalba. 

Theorem 2. ([S], GTT and Lemma 3.2) Let Nv > Md, where Md := 2 
Vd/, and 

let real positive nrumbers h, h' satisfy 
(i) hh' = MdNSv, 
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(ii) max(h, h') < Nv, 

then for every c E F, v(c) = 0, there exist Xc, Yc E OF such that 

Ixci < h, lYcI < h', v(xc) = v(yc) = 0, and c (mod v). 
YC 

D 

FRom now on we assume that Nv > 2Md, so Theorem 2 can be applied. 
For the fields with Idl > 15 we have Md = I > 2-5 > 2.4656... 
The open interval 

I= V2Md, VN-) 

is not empty. Let h run over all numbers in I, and define h' Md Nv. Then h' I ~~~~~h 
also runs over I. Evidently h and h' satisfy conditions (i) and (ii) of Theorem 2. 
FRom the theorem it follows that, for every c E F, v(c) = 0, there exist Xc, Yc E OF 

such that 

IxcI < h, lyCI < h', and i(c) =1Q1c). 

We define C to be the set of all these quotients: 

OO ?h H?MdVNv froe } C={- : X)Y E OF) ? < lXl<- h,O0< IYI< dh for some h E I.1 

Let us observe that from 0 < IxI < h < L Nv it follows that 0 < Nx = Ix12 < Nv, 
i.e., v(x) = 0, and similarly v(y) = 0. 

Lemma 5. If a, b E C and f3(a) =f3(b), then a E b U1. 

Proof. Let a = Xa b = xb where Xa,Ya,Xb,Yb E OF, and 0 < |Xal < h, 0 < 

lYal < h', 0 < lXbl < h1, 0 < lYbl < h1' for some h,h',hl,hl' E I satisfying 
hh' = hlhl = Md Nv. 

FRom 03(a) =3(b) we get f(Xa Yb) = f3(XbYa). 
Moreover 

|XaYbl + lXbYal < hhll + hlhl < -Nv + -Nv = Nv. 
2 2 

Therefore from Lemma 4 we get XaYb E XbYaUl, i.e., a E b Ul. D 

Lemma 6. 1 E C n ker c U1. 

Proof. From 1 < V2Md, it follows that 1 E C. 
Let c E C n ker 3. Then p3(c) =p(1), and from Lemma 5 we get c E U1. 

Lemma 7. If 

(3) Nv > max(2Md, 2qMd + )V 

then W C CUi. 
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Proof. FRom (3) it follows that 

(4) Nv>q 1+ 

for every q > 1 sufficiently near to 1. 
Take h = 1 Nv, h' = qV2Md, then h, h' E I, provided q > 1 is sufficiently 

near to 1. 
For w E W we choose c= E E C such that B(w) = 3(c) and x, y E OF satisfy y 

0 < lxI ? h, 0 < IYI <h'. 
Since qF < ldl/3, then Md _ _Ad/ > 2XqF > qF. Consequently (3) implies 

that Nv > qF and we can apply Lemma 3. Hence JW12 = Nw < qFNv. Moreover 

i3(wy) =3(x) and 

wyI + IXI < qFNvh' + h = Nvq 2qFMd + vNv < Nv 
qV 

in view of (3). Therefore from Lemma 4 we get wy E xU1, i.e., w E c U1. 0 

Lemma 8. Cg c CUl, provided g E OF,v(g) =0 and 1 < IgI < 4M2* 

Proof. If 1g9 = 1, then g = ?1 E C, and the lemma holds. Therefore we can assume 

that IgI > 1. 
For a = Xa E C take b = ?b E C such that /3(ga) = /3(b), where Xa,Ya,Xb,Yb E 

OF and 

0 < IXal < h, 0 < IYal < h/, 0 < IXbI < h1, 0< |Ybl ? hl, 

where h, h', h1, h1' E I, hh' = hihl = MdVNv. 
If we choose different a', b' E C (corresponding to different values of h and 

h1) such that 3(a') = 3(a) and 3(b') = 3(b) then in view of Lemma 5 we have 

a' E aU1 and b' E bU1. Therefore if ag E bU1, then also a'g E b'U1, i.e., the claim 

of the lemma does not depend on the values of h, h1 chosen. Thus we can choose 

h, hl E I arbitrarily. Put h = qx/2Md, hi = 1 jgh, where q > 1 is sufficiently q V9 
near to 1, to be fixed later. Then h, = /2gIMd E I, since 1 < I/g < 2d by 

the assumption of the lemma. We can prove similarly that h E I. 

We have 3(gYXaYb) = 3(XbYa) and 

|gXaYbl + IXbYaj < ?glhhi' + hlhl = Ig9Md Nv (q +?). 

Since 2 I/I < 
M by the assumption, then also 

q(+ q gI< 
- 

Md 

holds, for every q > 1 sufficiently near to 1. Consequently we get IgXaYbl + IXbYal < 

Nv. 

Therefore from Lemma 4 it follows that gXaYb E XbYaU1, i.e., ga E bU1. D 
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3.4. The set G C OF such that 3(G) generates k*. Now we define the set G: 

G ={x E OF O < iXcI < MdNv4}. 

Lemma 9. If Nv > Md, then 3(G) generates k*. 

Proof. The numbers h = h' = Md Nv4 satisfy the assumptions of Theorem 2. 
Therefore for every a E k* there exist x,y E OF such that 0 < IXI, IYI < h and 
/3(a) = . It follows that x, y E G and hence 3(G) generates k*. E 

3.5. Main result. 

Theorem 3. If Nv > 28/3M37/3 and Idl > 15, then Dv is an isomorphism. 

Proof. We have proved above (Lemmas 2, 6 and 7) that there exist sets C and W 
satisfying conditions (1) and (3) of Theorem 1, provided 

Nv > max (2Md, 2qFMd +j) 

Moreover Md > qF . FYom Lemmas 8 and 9 it follows that there exists a set G 
sa-tisfying condition (2) of Theorem 1 if 

1/ /4 Nv53 
M2Nv / < 4M2, i.e., if Nv> 24/3M5/ 3 

Since 

2 /M/ >max (2Md, 2Md/ + ) 

for Md > M15 = 2.4656...,the inequality N > 2 implies that there 
exist sets C, G, W satisfying the assumptions of Theorem 1. Therefore Dv is an 
isomorphism. D 

In the table below, for every discriminant d, -151 < d < -15 we give the 
estimation of Nv from Theorem 3. 

-15 -19 -20 -23 -24 -31 -35 -39 -40 
128.57 190.66 207.68 262.15 281.42 431.13 527.78 632.10 659.34 
-43 -47 -51 -52 -55 -56 -59 -67 

743.80 862.66 988.47 1020.98 1121.03 1155.20 1260.18 1557.65 
-68 -71 -79 -83 -84 -87 -88 -91 -95 

1596.59 1715.71 2049.86 2225.75 2270.62 2407.38 2453.68 2594.67 2787.53 
-103 -104 -107 -111 -115 -116 -119 -120 

3189.64 3241.42 3398.75 3613.14 3832.74 3888.45 4057.50 4114.48 
-123 -127 -131 -132 -136 -139 -143 -148 -151 

4287.34 4522.23 4762.10 4822.84 5068.87 5256.60 5511.12 5836.01 6034.51 

4. APPLICATIONS 

The bound for Nv given in Theorem 3 is small enough to use computers. For 
a given discriminant d < 0 every Dv is an isomorphism, with a finite number of 
exceptions. These exceptional v's should be considered separately. 

We describe below the main steps of the computations, and we illustrate them 
in the example d = -23. We have used the package GP/PARI Calculator [BBCO]. 

F'urther examples are given in the Appendix. 
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For a fixed d < 0 it is possible in general to improve the constructions of sets 
C, G, W given above. It enables us to reduce the number of exceptional v's consid- 
erably. We discuss these improvements below. 

4.1. A better set G. It is sufficient to consider valuations v of the field Q(Vd) 
such that Nv does not exceed the bound given in Theorem 3. 

Assume that 

(5) Nv>max (2Md, 2q Md+}) 

Then the sets C and W defined above satisfy the assumptions of Theorem 1. We 
shall define a better set G, provided Nv = p is a prime number. 

Namely, let G be a set of generators of the group (Z/p)* with the minimal value 
of m(G) := maxgcG 191 It is an easy exercise in programming in GP to find this 
set G. The results are as follows. 

Let w(k), for k = 3, 5, 7,11, be the set of all odd primes p < 1010 such that there 
exists a set G of generators of the group (Z/p)* satisfying m(G) = k, and there 
does not exist a set of generators with a smaller value of m(G). 

Then we have the following table: w(3) = {17, 31, 41, 43, 89, 109, 113, 127, 
137, 151, 157, 223, 229, 233, 251, 257, 277, 281, 283, 331, 353, 397, 401, 449, 521, 
569, 571, 593, 617, 631, 641, 683, 691, 733, 739, 761, 809, 811, 857, 881, 911, 929, 
953, 971, 977} 

w(5) = {73, 97,193,307,313,337,431,433,439,457,499,577,673,727,919, 937} 
w(7) = {241,409,601,643,769,997} 
w(II) = {1009}, 

and w(2) contains all odd primes p < 1010 not appearing in the above sets. There- 
fore p E w(2) iff the group (Z/p)* is generated by the set G = {-1, 2}. 

Now, to apply Lemma 8, it is sufficient to verify if 

(6) m(G) < 
Nv 

holds. Then &v is an isomorphism provided also (5) is satisfied. 
For d = -23, we have qF = 2 in view of Lemma 1. Moreover M23 = 23 = 

7 7~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~r 
3.053...; therefore, (5) takes the form Nv > 6.8133.... 

The bound in Theorem 3 is Nv > 262. Using the table above it is easy to verify 
that (6) holds for all noninert v satisfying 73 < p < 262, where Nv = p. Therefore 
the corresponding o9v's are isomorphisms. 

4.2. The best set C. If, for a noninert prime p = Nv, (6) does not hold, we 
consider the set W defined above, but we look for a better set C. Using a computer 
we can determine a set C c U n OF of representatives of all nonzero residues 
modulo v such that m(C) :=max,Cc Icl takes the minimal value. The procedure is 
as follows. Let f 

1+2 if d is odd, 

l 2, if d is even. 2'7 

We compute all values Ix + ywl, where x, y E Z, lxl < m, IyI < m for some m, and 
determine the corresponding residues 

x + yw (mod v) E OF/v -Z/p 

If m is sufficiently large, we get all residues in this way. 
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Then, for every nonzero residue r (mod p), we choose among the numbers x+yw 
a number Xr + yrw -r (mod p) with the smallest absolute value, say cr. 

If cr < p, then evidently xr + yrw E U, and we get in this way the best set C. 
Moreover m(C) = maxr cr. 

Then using the table above we determine the least value m(G) of a set G of 
generators of the group (OF/V)* =(Z/P)*. 

Denote m(W) := maxwEw 1w). 
Now, from Lemma 4 it follows that if 

(7) m(W) + m(C) < Nv, 

then assumption (1) of Theorem 1 holds, and if 

(8) (m(G) + 1)m(C) < Nv, 

then assumption (2) of Theorem 1 holds. 
Assumption (3) of Theorem 1 is satisfied, since C n ker3 = {1}, for the set C 

defined above. 
Thus, if (7) and (8) hold, then &v is an isomorphism. 
For example, if d = -23, then qF = 2. For all noninert primes p, 3 < p < 73, 

the values of m(C) have been determined by a computer, the values of m(G) we 
get from the table above, and the values of m(W) are estimated by 2Nv. 

The results are as follows. 

p m(G) m(W) < m(C) 
13 2 5.099 2.828 
23 2 6.782 6.928 
29 2 7.616 5.099 
31 3 7.874 5.196 
41 3 9.055 6.000 
47 2 9.695 6.928 
59 2 10.863 9.591 
71 2 11.916 7.874 
73 5 12.083 8.485 

It is easy to see that in all cases the inequalities (7) and (8) are satisfied. Thus Dv 
is an isomorphism, for all v such that p = Nv, 3 < p < 73. 

4.3. The inert primes. We shall consider the inert primes separately. In every 
case we construct the sets G and C with small values of m(G) and m(C). Then 
either inequalities (7) and (8) hold, or we should apply Lemma 4 directly to verify 
assumptions (1) and (2) of Theorem 1. 

For d =-23, there are only three inert primes p = 5, 7,11 satisfying the inequal- 
ity Nv = p2 < 262 of Theorem 3. In each case we give the sets G and C explicitly. 
Denote w = - (1 + -/23). 

For p = v = 5,7 and 11 in view of Lemma 3 we have 

m(W) < qFNv = /p. 

Put 

C ={a + bw : a, b EZ, IaI? bl < p 
(a, b) ? (O O) 

Evidently C represents all nonzero residues in OF/V TF2v 
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Moreover, for c = a + bw E C we have 

1C12 = N(c) = a2 + ab + 6b2 < ?8 = 2(p-1)2 < 2(p2i 

Hence m(C) < V2(p - 1). 
To prove that C C U, it is sufficient to verify that for every c = a + bw E C all 

prime divisors of N(c) = a2 + ab + 6b2 are less than Nv = p2. Since N(c) < 2p2, it 
is sufficient to prove that N(c) is not a prime number greater than p2. 

Suppose that q = a2 + ab + 6b2 is a prime number > p2. Then a is odd, b is even 
and 3 t a(a + b), ab #7 0, and e.g., b > 0. Moreover, max(lal, Ibl) < P- 

For p = 5 and p = 7 the only pair (a, b) satisfying the above conditions is (-1, 2), 
then q = 23 <p2. 

For p = 11 we have to consider the pairs (a,b) = (1,4),(-5,4),(5,2),(-1,2). 
The corresponding values of q are 101, 101, 59, 23, and they are less than p2 - 121. 

Thus in all cases we get a contradiction, hence C C U. 
Of course, we can also verify that C C U using a computer. 
Since Nv = p2, it is evident that the inequality (7) is satisfied. 
Now we look for a set G C OF such that 3(G) generates F*2 and m(G) is small. 
For every p in question we define the set G separately. 
If p = 5, take G = {w - 2}. 

Here ord(w - 2) = 24 in F25 and w - 21 = 10, hence m(G) = 10. 
If p = 7, take G = {2, }. 

Here ord(2) = 3 and ord(/3(w)) = 16 in F49, and 121 = 2, w1 = v6, hence m(G) = 

A. 
Ifp = 11, take G = {w+ 1}. 

Here ord(/3(w + 1)) = 120 in F21*, and w + 1I = v8, hence m(G) = v8. 
It is easy to verify that in all these cases inequality (8) holds, and hence Dv is an 

isomorphism for v = 5, 7 and 11. 

4.4. Small primes. Thus there remained four prime ideals P2, 1'2, 1)3, 1) correspond- 
ing to the splitting primes 2 and 3. 

We shall prove that also for v = VI3 the mapping Dv is an isomorphism. 
We can take W = {-1, 1 + w, 2, w}, since (1 + w) = P3, (2) = 2)2, (w) = P3 

and 12' - (23 (1 + w)-1). 
Put G = {-1} and C = {1, -1}. Since (1 - w)= 12P3 we can take,ir = 1 - w. 

Then the following elements belong to Ui: 1, 1 + 4 
=-1-w, 1 + (-W)ir = 

-2, 1 -r = w. Consequently W C CU1. Moreover CG = C C CU1. 
Therefore from Theorem 1 it follows that Dv is an isomorphism for v = P3. 

4.5. The generators of K2OF. Thus we have proved that, for d = -23, the 
group K20F is contained in the group ((W)) generated by symbols {a, b}, where 
a, b E W = {-1, 1 + w, 2, w}. It is known (see [BS]) that a Sylow 2-subgroup of 
K2OF has order 2 and is generated by {-1, -1}. Hence K2OF Z/2 e 2K20F. 
We shall prove that the group 2K20F of odd order is trivial. 

It is sufficient to prove that 4((W)) = 1, since 2K20F = 4K20F C 4((W)). 
The group 4((W)) is generated by elements {a, b}4, where a, b E W. Since 

{a,a}2 = {-1,a}2 = 1, for every a E W, and {w,1 + w}2 = {_w,1 + w}2 = 1, 
there remain two generators, {w, 2}4 and {1 + w, 2}4. We look for relations which 
they satisfy. 
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FRom the equality 

4 
2 1 +w 

we get 

1= { 1 - {w 4} = {w,2}4 {1+w+,2}2 

i.e., {, 2}4 = {1 + w, 2}2. 
FRom the equalities 

3 _ 1+w33 2 

w- 2 and 2- 

we get 

1 {23-(13}={ _ 3) 2 _ 2 1 3) 2 2 l+W 2 

- {, 2}-4{1 +w,2}4 = {w, 2}4. 

Hence {1 + w, 2}2 = 1. 

4.6. The group K2OF for d = -31. Let us remark that for larger values of Idl 
the last step of the proof cannot be performed so automatically. We should look for 
relations between a finite number of symbols. If we know some nontrivial elements 
of K2OF (like {-1, -1} for d = -23) and we can show that all other symbols 
in question are trivial or are equal to known elements, then the determination of 
K2OF is complete. Nevertheless, it may happen that we cannot prove the triviality 
of some symbols (and we suspect that they in fact are nontrivial!), but the reason 
may be that we did not use a sufficient number of relations between symbols. There 
is an example of this kind given by K. Belabas and H. Gangl: For d =-303 we 
expect that the symbol {2, 37 - 3-3A/X} has order 11 in K2OF, but we cannot 
prove that it is nontrivial. 

As a curiosity, we give below the last step of the proof that for d = -31 the 
group K2OF has order 2 (and is generated by {-1, -1}). 

Suppose that we have proved that &9 is an isomorphism, if Nv ? 7 (see the 
Appendix). 

Let F = (QW 3)7 w =: 1 + /=312 and let v =3, Nv= 9. Then we can take 

W={-1, w, 2, 1+w, 1+C, 2+w, 2+ i}, 

and the group (W) generated by W is equal to U. 
Let ((W)) be the subgroup of K2F generated by symbols {a, b} , where a, b E W. 

Thus K2OF C ((W)). 
It is known that a Sylow 2-subgroup of K2OF has order 2 and is generated 

by {-1, -1}, and a Sylow 3-subgroup of K2OF is trivial (see e.g., [BG]). Hence 
K2OF = Z/2 (e1 2K20OF, and the order of 2K20pF is prime to 6. 

We shall prove that the group 2K2OF is trivial. 
Denote by X the subgroup of ((W)) generated by its Sylow p-subgroups, where 

p = 2 and 3. 
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We shall use below the following easy observations: 
(i) If x e ((W)) satisfies X2 e X or 3 e X, then x e X. 

(ii) If a, b, c e (W) satisfy a + b=c and {b, c} e X, then 

{a, b}_{a, c} (mod X). 

In fact, from a + b = 1 we get 
C C 

1 = {-, -} = {a, b}{a, c}1 {b, c}{c, c} ={a, b}{a, c} 1 (mod X). c c 

FRom wwc = 8 it follows that w- e (W). Consequently the groups (W), ((W)) and X 
are closed under complex conjugation. 

Lemma 10. ((W)) = X. 

Proof. We shall prove that 

1. {w, w}, {w, 2} e X. 
2. {1 +w, w}, {1 +w, w-}, {1 +w, 2} e X. 
3. {3, w}, {3, 1 +w}, {1 +w, 1 +w} e X. 
4. {2+w, a}le X for a = 2, w, w-, 1 +w, 1 +w, 3, 2+ w. 

Then from the above remark the lemma follows. 
All congruences below are modulo X. 

Proof of 1. From w + w = 1 and wwc = 8 it follows that {w, w} = l and 

{w, 2}3 = {w, ww} _{w, w} = 1 (mod X), 

since {w, w} e X. Hence {w, 2} e X by (i). 

Proof of 2. From (1 + w) -w = 1, and (1 + w) + w = 2 in view of Step 1. and (ii) 
we get 

{1 +w, w}l =1 (mod X), 

{1+w,W=} _{1+w,2} (modX). 

Hence 

{1 +w, 3{1 +w, 2}3 = {1 +w, ww} = {1 +w, w}. 

Consequently 

{l+w,&w}eX and {1+w,2}eX. 

Proof of 3. The equalities 

1) 9-ww= 1, 
2) 9+W2=1+w, 
3) 6 + 2w = -w(l + w), 

in view of (ii) imply, respectively, 

1) 13' w} 13, w} E X) 
2) {3, w}4-={3, 1 + w}2 (mod X), 
3) {6,2w&}-{6,w(1+w)} (modX), 

and hence in view of Steps 1. and 2. 

3') {3,cw}-{3,3w(1+w)}. 
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Consequently by 2),3') and 1) we get 

{3, w}4 {3, 1+w}2 {3, }2{3 w}2 {3, w}-4, 

i.e., {3, w}8 E X and hence {3, w} E X. Then {3, 1 +} E X by 2). 

Finally, from the equality 

4) (1 +w)+ (1 +u)= 3, 

applying (ii) and complex conjugation we get {1 + w, 1 + -} {1 + X-, 3} 1 X. 

Proof of 4. FYom the equalities 

1) (2 +w?)-(1 +w?)=1, 
2) (2+w)-w=2, 
3) (2 + w) +CD = 3, 
4) (2 + w) + (1 + W-) = 4, 

we get 

1) {2+w, 1+w} 1, 
2) {2+w7,w} ={2+w,2}, 
3) {2+w, C} _{2+w, 3}, 
4) {2+w, 1+w} - {2+w, 2}2. 

Now we apply the equalities 

5) 3 (+ ( +2O) and (3+w)-(2+w)=1. 

Hence 

1--{2 + w , 3 + w} _{2 + w , 1 + &)} {2 + w), &)} {2 + w), 2}1 

{2+w, 22 .3.2-1} ={2+w, ww} = {2+w, 2}3, 

and consequently {2 + w, 2} E X. 
From 1) -5) we get that all symbols in question but the last belong to X. Finally, 

from 

6) (2 + w) + w(2 + Co) = 2 9 

we get {a)(2?+w), w(2+ W)} {I(2+w), 2.9} E X, i.e., {2+w, 2?+(} E X. 

Lemma 11. The group K20F has order 2 and is generated by {-1, -1}. 

Proof. FRom the above it follows that K20F C ((W)) = X, i.e., no prime greater 
than 3 divides #K2 OF. The Sylow p-subgroups of K2 OF, for p = 2 and p = 3 are 
known (see e.g., [BG]). D 

Let us remark that in the proof of Lemma 10 we have also used symbols {a, b}, 
where a did not belong to (W) = U, e.g., {3, w} with 3 V U. Our attempts to 
eliminate such external symbols from the proof was without success. 



COMPUTING THE TAME KERNEL OF QUADRATIC IMAGINARY FIELDS 1681 

APPENDIX: DETERMINING K20Q(vd) FOR 0 > d > -151 

1. Using the constructions given in this paper (see Theorem 3 and subsections 
4.1-4.3), we can first determine the bad primes and subsequently, using additional 
considerations, reduce the number of primes which can possibly contribute to the 
generation of the tame kernel. This has been performed successfully for the dis- 
criminants d > -151 and the results are displayed in Table 1: the first column gives 
-d, the second one shows a bound on the norm of the prime ideals involved which 
is deduced directly using the techniques described in the above. As an example, we 
give the full set of norms of "bad primes" for d = -107: 

[3,4, 11, 13, 19,23,25, 29,37,41,47,49, 53,83, 193, 241,643, 1801]. 

2. The third column of the table displays a bound which was obtained after sub- 
sequent improvements of the algorithm, still using Tate's criterion, by constructing 
suitable sets C for each bad prime separately. For details, we refer to our paper in 
preparation [KH]. 

3. The program not only finds (small) bounds for the primes v for which the 
map &v is possibly not an isomorphism, it actually produces generators for the 
corresponding K-group and relations coming from trivial symbols {z, 1 - z} where 
both z and 1- z involve only primes below some bound (essentially the one given in 
the third column). In order to (considerably) simplify the program, the results are 
determined only up to 2-torsion. (This is not a serious restriction in view of the work 
of Browkin and Schinzel [BS] who have determined the maximal elementary Abelian 
2-subgroup 2K20F of K2OF for quadratic F, and in particular the generators of 
this subgroup.) Again, details are given in [KH]. The generators are stated in 
the fourth column of the table, where x is put in place of -ad. If the group 
K2OF/2K20F is trivial, the corresponding slot is left empty. 

4. Finally, the fifth column gives (in the nontrivial case) the order of the gene- 
rators modulo 2K20F, for which we have a priori only obtained an upper bound in 
the process. On the other hand, lower bounds for the q-part of K2OF for q = 2,3,4 
have been established by Browkin, Schinzel, Qin and others, and the two bounds 
coincide in almost all cases. The only lower bound which seems not yet covered in 
the published literature is the 8-rank for d = -68, but see [Q3], Theorem 4.1. All 
the results agree with the conjectural ones in [BG]. They are reproduced here in 
the last column. 

5. Summarizing, the computer program (written in GP-PARI) covers many 
more cases than have been known so far, although the complexity of the compu- 
tations tends to increase rapidly with the size of the discriminant. Moreover, for 
larger discriminants, one can at least conjecturally give generators and their orders 
(cf. [KH]). 
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TABLE 1. The group K20F 

-d bound for refined generator order K20F 
bad primes bound mod 2K20F mod 2K20F 

31 31 5 2 
39 41 3 {2, x + 5} 3 (2,3) 
40 41 11 1 
43 97 17 1 
47 25 3 2 
51 49 11 2 
52 47 11 1 
55 17 7 2 
56 23 3 2 
59 17 3 1 
67 193 23 1 
68 25 3 {2, x + 2} 4 8 
71 73 3 2 
79 241 5 2 
83 41 7 1 
84 37 7 {2,x - 6} 3 (2,3) 
87 241 7 2 
88 307 23 1 
91 241 7 {3,x + 3} 3 2 
95 97 3 2 

103 409 13 2 
104 121 5 1 
107 1801 11 {2,x- 1} 3 3 
111 307 5 {- 3 X + 5 -x- 9} 3 (2,3) 
115 1129 23 {2, x - 5} 2 2 
116 289 5 1 
119 241 5 (2,2) 
120 1801 13 {2,x- 12} 3 (2,3) 
123 1009 17 2 
127 127 13 2 
131 409 3 1 
132 433 17 {2,x + 6} 2 4 
136 431 19 {2,x + 8} 2 4 
139 409 11 1 
143 409 3 {2,3x - 53} 2 2 
148 2689 43 1 
151 1009 5 2 
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